1) a) angle $y=84^{\circ}$
angle $z=57^{\circ}$
b) angle $y=116^{\circ}$
angle $z=52^{\circ}$
c) angle $y=20^{\circ}$
angle $z=93^{\circ}$
d) angle $y=73^{\circ}$
angle $z=326^{\circ}$
e) angle $y=27^{\circ}$
angle $z=63^{\circ}$
2)

2) a) This is false. Angle \boldsymbol{y} is not vertically opposite the angle measuring $\mathbf{3 9}^{\circ}$.
b) This is true. Angle \boldsymbol{x} is 49°, which can be found by subtracting 41° and 90° from 180° as angles in a triangle add to $\mathbf{1 8 0}^{\circ}$.
c) This is false. Although angle z is one of 5 angles around a point, they are not all equal angles.
3) angle $x=49^{\circ}$
angle $y=51^{\circ}$
angle $z=141^{\circ}$

1) angle $x=20^{\circ}$
angle $y=120^{\circ}$
angle $z=30^{\circ}$
2) Angle $x=315^{\circ}$ as two angles in an isosceles triangle are the same and angles around a point add to 360°. Angle $y=341^{\circ}$ as angles in a triangle add to 180° and angles around a point add to 360°.

Angle $z=71^{\circ}$ as angles around a point add to 360°.
3) angle $p=54^{\circ}$
angle $q=54^{\circ}$
angle $x=36^{\circ}$
angle $y=44^{\circ}$
angle $z=59^{\circ}$

