1) For each question, calculate the value of the angles y and z. Think carefully about what you know about angles around a point, on a straight line and in different types of triangles.

b)

c)

d)

e)

Important note: triangles are not drawn to scale, do not use a protractor.

1) For each question, calculate the value of the angles y and z. Think carefully about what you know about angles around a point, on a straight line and in different types of triangles.

b)

c)

d)

e)

Important note: triangles are not drawn to scale, do not use a protractor.

1) a) Circle the angle statements that you can use to help you calculate the missing angles in this shape.

Angles around a point $=$
Vertically opposite angles are equal.

Angles in a triangle $=$ 180°.
Angles on a straight line $=180^{\circ}$.

A right angle $=90^{\circ}$.

Isosceles triangles have 2 equal angles.
b) Label the shape above with all of the missing angles.
2) True or false? Explain how you know.

a) Angle y will measure 39° as it is vertically opposite the angle measuring 39°.
b) To find angle x, subtract 41° and the value of a right angle from 180°.
c) As angle z is one of 5 angles around a point, you can calculate angle z by dividing 360° by 5 .
d) Find the missing angles x, y and z.

Important note: triangles are not drawn to scale, do not use a protractor.

1) a) Circle the angle statements that you can use to help you calculate the missing angles in this shape.

Angles around a point $=$
360°.
Vertically opposite angles are equal.

Angles in a triangle $=$
180°.
A right angle $=90^{\circ}$.

Angles on a straight line
Isosceles triangles have 2
$=180^{\circ}$. equal angles.
b) Label the shape above with all of the missing angles.
2) True or false? Explain how you know.

a) Angle y will measure 39° as it is vertically opposite the angle measuring 39°.
b) To find angle x, subtract 41° and the value of a right angle from 180°.
c) As angle z is one of 5 angles around a point, you can calculate angle z by dividing 360° by 5.
d) Find the missing angles x, y and z.

Important note: triangles are not drawn to scale, do not use a protractor.

1) Calculate the value of angles x, y and z.

2) Calculate all the angles indicated by a letter, giving reasons for all your answers.

3) Calculate all the angles indicated by a letter.

Important note: triangles are not drawn to scale, do not use a protractor.

1) Calculate the value of angles x, y and z.

2) Calculate all the angles indicated by a letter, giving reasons for all your answers.

3) Calculate all the angles indicated by a letter.

Important note: triangles are not drawn to scale, do not use a protractor.

